Abstract
AbstractX-ray crystallography is a cornerstone of biochemistry. Traditional freezing of protein crystals to cryo-temperatures mitigates X-ray damage and facilitates crystal handling but provides an incomplete window into the ensemble of conformations at the heart of protein function and energetics. Room temperature (RT) X-ray crystallography provides more extensive ensemble information, and recent developments allow conformational heterogeneity, the experimental manifestation of ensembles, to be extracted from single crystal data. However, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical question, we obtained increasingly X-ray-damaged high-resolution datasets (1.02–1.52 Å) from single thaumatin, proteinase K, and lysozyme crystals. Heterogeneity analyses indicated a modest increase in conformational disorder with X-ray damage. Nevertheless, these effects do not alter overall conclusions and can be minimized by limiting the extent of X-ray damage or eliminated by extrapolation to obtain heterogeneity information free from X-ray damage effects. To compare these effects to damage at cryo temperature and to learn more about damage and heterogeneity in cryo-cooled crystals, we carried out an analogous analysis of increasingly damaged proteinase K cryo datasets (0.9–1.16 Å). We found X-ray damage-associated heterogeneity changes that were not observed at RT. This observation and the scarcity of reported X-ray doses and damage extent render it difficult to distinguish real from artifactual conformations, including those occurring as a function of temperature. The ability to aquire reliable heterogeneity information from single crystals at RT provides strong motivation for further development and routine implementation of RT X-ray crystallography to obtain conformational ensemble information.SignificanceX-ray crystallography has allowed biologists to visualize the proteins that carry out complex biological processes and has provided powerful insights into how these molecules function. Our next level of understanding requires information about the ensemble of conformations that is at the heart of protein function and energetics. Prior results have shown that room temperature (RT) X-ray crystallography provides extensive ensemble information, but are subject to extenstive X-ray damage. We found that ensemble information with little or no effects from X-ray damage can be collected at RT. We also found that damage effects may be more prevalent than recognized in structures obtained under current standard cryogenic conditions. RT X-ray crystallography can be routinely implemented to obtain needed information about conformational ensembles.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献