CaProDH2-mediated modulation of proline metabolism confers tolerance to Ascochyta in chickpea under drought

Author:

Patil Mahesh,Pandey PrachiORCID,Irrulappan VadivelmuruganORCID,Singh AnuradhaORCID,Verma Praveen,Ranjan AshishORCID,Senthil-Kumar MuthappaORCID

Abstract

AbstractDrought and leaf blight caused by the fungus Ascochyta rabiei often co-occur in chickpea (Cicer arietinum)-producing areas. While the responses of chickpea to either drought or A. rabiei infection have been extensively studied, their combined effect on plant defense mechanisms is unknown. Fine modulation of stress-induced signaling pathways under combined stress is an important stress adaptation mechanism that warrants a better understanding. Here we show that drought facilitates resistance against A. rabiei infection in chickpea. The analysis of proline levels and gene expression profiling of its biosynthetic pathway under combined drought and A. rabiei infection revealed the gene encoding proline dehydrogenase (CaProDH2) as a strong candidate conferring resistance to A. rabiei infection. Transcript levels of CaProDH2, pyrroline-5-carboxylate (P5C) quantification, and measurement of mitochondrial reactive oxygen species (ROS) production showed that fine modulation of the proline–P5C cycle determines the observed resistance. In addition, CaProDH2-silenced plants lost basal resistance to A. rabiei infection induced by drought, while overexpression of the gene conferred higher resistance to the fungus. We suggest that the drought-induced accumulation of proline in the cytosol helps maintain cell turgor and raises mitochondrial P5C contents by a CaProDH2-mediated step, which results in ROS production that boosts plant defense responses and confers resistance to A. rabiei infection. Our findings indicate that manipulating the proline–P5C pathway may be a possible strategy for improving stress tolerance in plants suffering from combined drought and A. rabiei infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3