Abstract
AbstractSHAPE-JuMP is a concise strategy for identifying close-in-space interactions in RNA molecules. Nucleotides in close three-dimensional proximity are crosslinked with a bi-reactive reagent that covalently links the 2’-hydroxyl groups of the ribose moieties. The identities of crosslinked nucleotides are determined using an engineered reverse transcriptase that jumps across crosslinked sites, resulting in a deletion in the cDNA that is detected using massively parallel sequencing. Here we introduce ShapeJumper, a bioinformatics pipeline to process SHAPE-JuMP sequencing data and to accurately identify through-space interactions. ShapeJumper identifies proximal interactions with near-nucleotide resolution using an alignment strategy that is optimized to tolerate the unique non-templated reverse-transcription profile of the engineered crosslink-traversing reverse-transcriptase. JuMP-inspired strategies are now poised to replace adapter-ligation for detecting RNA-RNA interactions in most crosslinking experiments.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献