A CRISPR toolbox for generating intersectional genetic mice for functional, molecular, and anatomical circuit mapping

Author:

Lusk Savannah J.ORCID,McKinney Andrew,Hunt Patrick J.,Fahey Paul G.,Patel Jay,Chang Andersen,Sun Jenny J.,Martinez Vena K.,Zhu Ping Jun,Egbert Jeremy R.,Allen Genevera,Jiang Xiaolong,Arenkiel Benjamin R.,Tolias Andreas S.,Costa-Mattioli Mauro,Ray Russell S.ORCID

Abstract

ABSTRACTBackgroundA full understanding of circuits and cellular mechanisms governing health and disease requires the dissection and multi-faceted study of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic response alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical study. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allow for more defined target expression. Although the application of this method is becoming increasingly popular, the expense and difficulty associated with production of customized intersectional mouse lines have limited widespread application to more common allele manipulations that are often commercially produced at great expense.ResultsWe present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study how functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle.ConclusionsLines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3