Interferon-gamma and TNF-alpha synergistically enhance the immunomodulatory capacity of Endometrial-Derived Mesenchymal Stromal Cell secretomes by differential microRNA and extracellular vesicle release

Author:

de Pedro María de los ÁngelesORCID,Marinaro FedericaORCID,López Esther,Pulido María,Sánchez-Margallo Francisco MiguelORCID,Álvarez Verónica,Casado Javier GORCID

Abstract

AbstractEndometrial Mesenchymal Stromal Cells (endMSCs) can be easily isolated from menstrual blood by plastic adherence. These cells have a potent pro-angiogenic and immunomodulatory capacity, and their therapeutic effect is mediated by paracrine mechanisms where secretome have a key role. In this paper, we aimed to evaluate different priming conditions in endMSCs using pro-inflammatory cytokines and Toll-Like Receptor ligands. Our in vitro results revealed a synergistic and additive effect of IFNγ and TNFα on endMSCs. The combination of these pro-inflammatory cytokines significantly increased the release of Indoleamine 2,3-dioxygenase (IDO1) in endMSCs. Additionally, this study was focused on the phenotype of IFNγ/TNFα-primed endMSCs (endMSCs*). Here we found that immune system-related molecules such as CD49d, CD49e, CD54, CD56, CD58, CD63, CD126, CD152, or CD274 were significantly altered in endMSCs* when compared to control cells. Afterward, our study was completed with the characterization of released miRNAs by Next Generation Sequencing (NGS). Briefly, our system biology approaches demonstrated that endMSCs* showed an increased release of 25 miRNAs whose target genes were involved in immune response and inflammation. Finally, the cellular and molecular characterization was completed with in vitro functional assays.In summary, the relevance of our results lies in the therapeutic potential of endMSCs*. The differences in cell surface molecules involved in migration, adhesion and immunogenicity, allowed us to hypothesize that endMSCs* may have an optimal homing and migration capacity towards inflammatory lesions. Secondly, the analysis of miRNAs, target genes and the subsequent lymphocyte activation assays demonstrated that IFNγ/TNFα-primed secretome may exert a potent effect on the regulation of adverse inflammatory reactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3