Fluctuating Environment Can Negate Cheater Success Due to Speed-Agility Trade-Off

Author:

van den Berg Naomi Iris,Kalmar Lajos,Patil Kiran R.ORCID

Abstract

AbstractStability of microbial cooperation through common goods is susceptible to cheating. Evidence suggests that cheating plays a less prominent role in many natural systems than hitherto predicted by models of eco-evolutionary dynamics and evolutionary game theory. While several cheater negating factors such as spatial segregation have been identified, most consider single-nutrient regimes. Here we propose a cheater-suppressing mechanism based on previous experimental observations regarding the biochemical trade-off between growth speed and delay in switching to alternative nutrients. As changing the nutrient source requires redistribution of enzymatic resources to different metabolic pathways, the advantage in speed is offset by lower agility due to longer time required for resource re-allocation. Using an in silico model system of sucrose utilisation by Saccharomyces cerevisiae, we find that a tradeoff between growth rate and diauxic lag duration can supress cheaters under fluctuating nutrient availability and thereby stabilise cooperation. The resulting temporal dynamics constrain cheaters despite their competitive benefit for the growth on the primary nutrient via avoided public goods synthesis costs. We further show that this speed-agility trade-off can function in synergy with spatial segregation to avoid the collapse of the community due to the cheaters. Taken together, the growth-agility trade-off may contribute to cheater suppression in microbial ecosystems experiencing fluctuating environments, such as plant root microbiota and gut microbiota.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3