A fast, general synteny detection engine

Author:

Ahrens Joseph B.,Wade Kristen J.,Pollock David D.

Abstract

AbstractThe increasingly widespread availability of genomic data has created a growing need for fast, sensitive and scalable comparative analysis methods. A key aspect of comparative genomic analysis is the study of synteny, co-localized gene clusters shared among genomes due to descent from common ancestors. Synteny can provide unique insight into the origin, function, and evolution of genome architectures, but methods to identify syntenic patterns in genomic datasets are often inflexible and slow, and use diverse definitions of what counts as likely synteny. Moreover, the reliable identification of putatively syntenic regions (i.e., whether they are truly indicative of homology) with different lengths and signal to noise ratios can be difficult to quantify. Here, we present Mology, a fast, flexible, alignment-free, nonparametric method to detect regions of syntenic elements among genomes or other datasets. The core algorithm operates on consecutive, rank-ordered elements, which could be genes, operons, motifs, sequence fragments, or any other orderable element. It is agnostic to the physical distance between distinct elements and also to directionality and order within syntenic regions, although such considerations can be addressed post hoc. We describe the underlying statistical theory behind our analysis method, and employ a Monte Carlo approach to estimate the false positive rate and positive predictive values for putative syntenic regions. We also evaluate how varying amounts of noise affect recovery of true syntenic regions among Saccharomycetaceae yeast genomes with up to ~100 million years of divergence. We discuss different strategies for recursive application of our method on syntenic regions with sparser signal than considered here, as well as the general applicability of the core algorithm.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3