Antibody profiling reveals gender differences in response to SARS-COVID-2 infection

Author:

Tsverava LiaORCID,Chitadze NazibrolaORCID,Chanturia GvantsaORCID,Kekelidze MerabORCID,Dzneladze DavidORCID,Imnadze PaataORCID,Gamkrelidze AmiranORCID,Lagani VincenzoORCID,Khuchua ZazaORCID,Solomonia RevazORCID

Abstract

AbstractThe recent emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an ongoing global COVID-19 pandemic and public health crisis. Detailed study of human immune response to SARS-COVIS-2 infection is the important topic for a successful treatment of this disease. Our study was aimed to characterize immune response on the level of antibody profiling in convalescent plasma of patients in Georgia. Antibodies against the following SARS-COV-2 proteins were studied: nucleocapsid and various regions of Spike (S) protein: S1, S2 and Receptor binding domain (RBD). Convalescent plasma of patients 6-8 weeks after initial confirmation of SARS-COV-2 infection were tested. Nearly 80% out of 154 patients studied showed presence of antibodies against nucleocapsid protein. The antibody response to three fragments of S protein was significantly less and varied in the range of 20-30%. Significantly more females as compared to males were producing antibodies against S1 fragment, whereas the difference between genders by the antibodies against nucleocapsid protein and RBD was statistically significant only by one-tailed Fisher exact test. There were no differences between the males and females by antibodies against S2 fragment. Thus, immune response against some viral antigens are stronger in females and we suggest that it could be one of the factors of less female fatality after SARS-COVID-2 infection.

Publisher

Cold Spring Harbor Laboratory

Reference14 articles.

1. Sex differences in COVID-19 case fatality: do we know enough?

2. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission

3. Sex differences in immune responses that underlie COVID-19 disease outcomes

4. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights;Journal of basic Microbiology,2021

5. Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020;A Global and Regional Approach by EpidemiologicalWeek. Viruses,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3