Can Auxiliary Indicators Improve COVID-19 Forecasting and Hotspot Prediction?

Author:

McDonald Daniel J.ORCID,Bien Jacob,Green Alden,Hu Addison J.ORCID,DeFries Nat,Hyun Sangwon,Oliveira Natalia L.,Sharpnack James,Tang Jingjing,Tibshirani RobertORCID,Ventura Valérie,Wasserman Larry,Tibshirani Ryan J.ORCID

Abstract

AbstractShort-term forecasts of traditional streams from public health reporting (such as cases, hospitalizations, and deaths) are a key input to public health decision-making during a pandemic. Since early 2020, our research group has worked with data partners to collect, curate, and make publicly available numerous real-time COVID-19 indicators, providing multiple views of pandemic activity in the U.S. This paper studies the utility of five such indicators—derived from de-identified medical insurance claims, self-reported symptoms from online surveys, and COVID-related Google search activity—from a forecasting perspective. For each indicator, we ask whether its inclusion in an autoregressive (AR) model leads to improved predictive accuracy relative to the same model excluding it. Such an AR model, without external features, is already competitive with many top COVID-19 forecasting models in use today. Our analysis reveals that (a) inclusion of each of these five indicators improves on the overall predictive accuracy of the AR model; (b) predictive gains are in general most pronounced during times in which COVID cases are trending in “flat” or “down” directions; (c) one indicator, based on Google searches, seems to be particularly helpful during “up” trends.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Alex Reinhart , Logan Brooks , Maria Jahja , Aaron Rumack , Jingjing Tang ,, Sumit Agrawal , Wael Al Saeed , Taylor Arnold , Amartya Basu , Jacob Bien , Ángel A. Cabrera , Andrew Chin , Eu Jing Chua , Brian Clark , Sarah Colquhoun , Nat DeFries , David C. Farrow , Jodi Forlizzi , Jed Grabman , Samuel Gratzl , Alden Green , George Haff , Robin Han , Kate Harwood , Addison J. Hu , Raphael Hyde , Sangwon Hyun , Ananya Joshi , Jimi Kim , Andrew Kuznetsov , Wichada La Motte-Kerr , Yeon Jin Lee , Kenneth Lee , Zachary C. Lipton , Michael X. Liu , Lester Mackey , Kathryn Mazaitis , Daniel J. McDonald , Phillip McGuinness , Balasubramanian Narasimhan , Michael P. O’Brien , Natalia L. Oliveira , Pratik Patil , Adam Perer , Collin A. Politsch , Samyak Rajanala , Dawn Rucker , Chris Scott , Nigam H. Shah , Vishnu Shankar , James Sharpnack , Dmitry Shemetov , Noah Simon , Benjamin Y. Smith , Vishakha Srivastava , Shuyi Tan , Robert Tibshirani , Elena Tuzhilina , Ana Karina Van Nortwick , Valérie Ventura , Larry Wasserman , Benjamin Weaver , Jeremy C. Weiss , Spencer Whitman , Kristin Williams , Roni Rosenfeld , and Ryan J. Tibshirani . An open repository of real-time covid-19 indicators. medRxiv, 2021.

2. Delphi Research Group. COVIDcast Epidata API. https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html, 2020.

3. Delphi Research Group. covidcast R package. https://cmu-delphi.github.io/covidcast/covidcastR, 2020.

4. Delphi Research Group. COVIDcast Python API client. https://cmu-delphi.github.io/covidcast/covidcast-py/html/, 2020.

5. Forecasting for COVID-19 has failed

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3