Using top-down modulation to optimally balance shared versus separated task representations

Author:

Verbeke PieterORCID,Verguts TomORCID

Abstract

AbstractHuman adaptive behavior requires continually learning and performing a wide variety of tasks, often with very little practice. To accomplish this, it is crucial to separate neural representations of different tasks in order to avoid interference. At the same time, sharing neural representations supports generalization and allows faster learning. Therefore, a crucial challenge is to find an optimal balance between shared versus separated representations. Typically, models of human cognition employ top- down modulatory signals to separate task representations, but there exist surprisingly little systematic computational investigations of how such modulation is best implemented. We identify and systematically evaluate two crucial features of modulatory signals. First, top-down input can be processed in an additive or multiplicative manner. Second, the modulatory signals can be adaptive (learned) or non-adaptive (random). We cross these two features, resulting in four modulation networks which are tested on a variety of input datasets and tasks with different degrees of stimulus-action mapping overlap. The multiplicative adaptive modulation network outperforms all other networks in terms of accuracy. Moreover, this network develops hidden units that optimally share representations between tasks. Specifically, different than the binary approach of currently popular latent state models, it exploits partial overlap between tasks.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas;The Journal of Neuroscience,2020

2. Grounding cognitive control in associative learning.

3. Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex

4. Alon, N. , Reichman, D. , Shinkar, I. , Wagner, T. , Musslick, S. , Cohen, J. D. , … Ozcimder, K. (2017). A graph-theoretic approach to multitasking. In Advances in Neural Information Processing Systems (pp. 2097–2106).

5. The dimensionality of neural representations for control;Current Opinion in Behavioral Sciences,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3