Human genetic factors associated with pneumonia susceptibility, a cue for COVID-19 mortality

Author:

Guin Debleena,Yadav Saroj,Singh Priyanka,Singh Pooja,Thakran Sarita,Kukal Samiksha,Kanojia Neha,Paul Priyanka Rani,Pattnaik Bijay,Sardana Viren,Grover Sandeep,Hasija Yasha,Agrawal Anurag,Kukreti Ritushree,

Abstract

AbstractThe risk for community acquired pneumonia (CAP) is partially driven by genetics. To identify the CAP-associated genetic risk loci, we performed a meta-analysis of clinically diagnosed CAP (3,310 individuals) with 2,655 healthy controls. The findings revealed CYP1A1 variants (rs2606345, rs4646903, rs1048943) associated with pneumonia. We observed rs2606345 [G vs T; OR=1.49(1.29-1.69); p=0.0001; I2= 15.5%], and rs1048943 [T vs G; OR= 1.31(0.90-1.71); p=0.002; I2=19.3%] as risk markers and rs4646903 [T vs C; OR= 0.79(0.62-0.96); p=0.03; I2=0%] as a protective marker for susceptibility to CAP, when compared with healthy controls. Our meta-analysis showed the presence of CYP1A1 SNP alleles contributing significant risk toward pneumonia susceptibility. Interestingly, we observed a striking difference of allele frequency for rs2606345 (CYP1A1) among Europeans, Africans and Asians which may provide a possible link for observed variations in death due to coronavirus disease 2019 (COVID-19), a viral pneumonia. We report, for the first time, a significant positive correlation for the risk allele (T or A) of rs2606345, with a higher COVID-19 mortality rate worldwide and within a genetically heterogeneous nation like India. Mechanistically, the risk allele ‘A’ (rs2606345) is associated with lower expression of CYP1A1 and presumably leads to reduced capacity for xenobiotic detoxification. We note that ambient air pollution, a powerful inducer of CYP1A1 gene expression, is globally associated with lower, not higher mortality, as would normally be predicted. In conclusion, we find that CYP1A1 alleles are associated with CAP mortality, presumably via altered xenobiotic metabolism. We speculate that gene-environment interactions governing CYP1A1 expression may influence COVID-19 mortality.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. WHO Factsheet, The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

2. Jain V , Vashisht R , Yilmaz G , et al. Pneumonia Pathology. [Updated 2021 Apr 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526116/

3. Genetics of immune-mediated disorders: from genome-wide association to molecular mechanism

4. Genetics of susceptibitlity to human infectious disease

5. Cytochrome P450 1A1 enhances inflammatory responses and impedes phagocytosis of bacteria in macrophages during sepsis;Cell Commun Signal,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3