ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes

Author:

Iida KeitaORCID,Kondo JumpeiORCID,Wibisana Johannes NicolausORCID,Inoue MasahiroORCID,Okada MarikoORCID

Abstract

AbstractMotivationSingle-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret the biological implications of computational results. Hence, a theory for efficiently annotating individual cells is necessary.ResultsWe present ASURAT, a computational pipeline for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process, and signaling pathway activity for single-cell transcriptomic data, using correlation graph-based decomposition of genes based on database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for small cell lung cancer and pancreatic ductal adenocarcinoma, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data.AvailabilityA GPLv3-licensed implementation of ASURAT is on GitHub (https://github.com/keita-iida/ASURAT).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3