Single-nucleus transcriptomes reveal functional and evolutionary properties of cell types in the Drosophila accessory gland

Author:

Majane Alex C.,Cridland Julie M.,Begun David J.

Abstract

ABSTRACTMany traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in post-copulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female post-copulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female post-copulatory biology, yet relatively little is known about their evolutionary properties. Here we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally define each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male post-copulatory traits.SIGNIFICANCE STATEMENTRapid evolution of male traits may result from competition among males or antagonistic interactions between the sexes over control of reproduction. In animals with internal fertilization, interactions may occur in the female reproductive tract. Drosophila seminal fluid proteins, which are secreted by three major cell types of the male accessory gland and ejaculatory duct, are required for female sperm storage and use, and influence female behavior and physiology. These cell types have distinct effects on females, yet relatively little is known about their evolutionary properties. Here we characterize diversity and transcriptome evolution of seminal fluid-producing tissues at the cell level. These data reveal new functional properties of these cells and complex evolutionary patterns that vary across cell types and lineages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3