Topology identifies emerging adaptive mutations in SARS-CoV-2

Author:

Bleher Michael,Hahn Lukas,Patiño-Galindo Juan Ángel,Carrière Mathieu,Bauer Ulrich,Rabadán Raúl,Ott Andreas

Abstract

AbstractThe COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. As the virus spreads and evolves it acquires new mutations that could have important public health consequences, including higher transmissibility, morbidity, mortality, and immune evasion, among others. Ideally, we would like to quickly identify new mutations that could confer adaptive advantages to the evolving virus by leveraging the large number of SARS-CoV-2 genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. The large number of currently available genomes, more than a million at this moment, however precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations of the coronavirus SARS-CoV-2 in the ongoing COVID-19 pandemic. Our method relies on a novel topological tool for the analysis of viral genome datasets based on persistent homology. It systematically identifies convergent events in viral evolution merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the complete GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates taken from patients all over the world since the beginning of the pandemic. A complete list of mutations showing topological signals of convergence is compiled. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape. Moreover, for many adaptive mutations the topological signal precedes an increase in prevalence. We demonstrate the capability of our method to effectively identify emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we are able to extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3