Acceleration of Evolutionary Processes by Learning and Extended Fisher’s Fundamental Theorem

Author:

Nakashima So,Kobayashi Tetsuya J.

Abstract

AbstractNatural selection is general and powerful concept not only to explain evolutionary processes of biological organisms but also to design engineering systems such as genetic algorithms and particle filters. There is a surge of interest, both from biology and engineering, in considering natural selection of intellectual agents that can learn individually. Learning by individual agents of better behaviors for survival may accelerate the evolutionary processes by natural selection. We have accumulating pieces of evidence that organisms can transmit its information to the next generation via epigenetic states or memes. Also, such idea is important for engineering applications to improve the genetic algorithms and the particle filter. To accelerate the evolutionary process, an agent should change their strategy so that the population fitness increases the most. Equivalently, an agent should update the strategy towards a gradient (derivative) of the population fitness with respect to the strategy. However, it has not yet been clarified whether and how an agent can estimate the gradient and accelerate the evolutionary process. We also lack methodology to quantify the acceleration to understand and predict the impact of learning. In this paper, we address these problems. We show that an learning agent can accelerate the evolutionary process by proposing ancestral learning, which uses the information transmitted from the ancestor (ancestral information) via epigenetic states or memes. Numerical experiments show that ancestral learning actually accelerates the evolutionary process. We next show that the ancestral information is sufficient to estimate the gradient. In particular, learning can accelerate the evolutionary process without communications between agents. Finally, to quantify the acceleration, we extend the Fisher’s fundamental theorem (FF-thm) for natural selection to ancestral learning. The conventional FF-thm relates the speed of evolution by natural selection to the variety of the individual fitness in the population. Our extended FF-thm relates the acceleration of the evolutionary process to the variety of individual fitness of the agent. By the theorem, we can quantitatively understand when and why learning is beneficial.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3