Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging

Author:

Norton-Baker Brenna,Mehrabi Pedram,Kwok Ashley O.,Roskamp Kyle W.,Sprague-Piercy Marc A.,Stetten David von,Miller R.J. Dwayne,Martin Rachel W.

Abstract

ABSTRACTCataract disease, a clouding of the eye lens due to precipitation of lens proteins, affects millions of people every year worldwide. The proteins that comprise the lens, the crystallins, show extensive post-translational modifications (PTMs) in aged and cataractous lenses, most commonly deamidation and oxidation. Although surface-exposed glutamines and asparagines show the highest rates of deamidation, multiple modifications can accumulate over time in these long-lived proteins, even for buried residues. Both deamidation and oxidation have been shown to promote crystallin aggregation in vitro; however, it is not clear precisely how these modified crystallins contribute to insolubilization. Here, we report six novel crystal structures of a major human lens protein, γS-crystallin (γS): one of the wild-type in a monomeric state, and five of deamidated γS variants, ranging from three to nine deamidation sites, after varying degrees of sample aging. Consistent with previous work that focused on single-to triple-site deamidation, the deamidation mutations do not appear to drastically change the fold of γS; however, increasing deamidation leads to accelerated oxidation and disulfide bond formation. Successive addition of deamidated sites progressively destabilized protein structure as evaluated by differential scanning fluorimetry. Light scattering showed the deamidated variants display an increased propensity for aggregation compared to the wild-type protein. The results suggest the deamidated variants are useful as models for accelerated aging; the structural changes observed over time provide support for redox activity of γS-crystallin in the human lens.HighlightsNovel structures of cataract-associated variants of human eye lens protein γS-crystallin reportedIncreasing deamidation of γS-crystallin decreases stability and affects aggregation propensityOverall fold of γS-crystallin maintained among deamidated and disulfide-bonded variantsDeamidated γS variants form disulfide bonds more rapidly than wild-type γSPotential functional advantage of disulfide bonding in the CXCXC motif proposed

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3