A new combination testing methodology to identify accurate and economical point-of-care testing strategies

Author:

Jain Sanjay,Jónasson Jónas OddurORCID,Pauphilet JeanORCID,Flower Barnaby,Moshe Maya,Fontana Gianluca,Satkunarajah Sutharsan,Tedder Richard,McClure Myra,Ashrafian HutanORCID,Elliott PaulORCID,Barclay Wendy S,Atchison Christina,Ward Helen,Cooke Graham,Darzi Ara,Ramdas Kamalini

Abstract

ABSTRACTBackgroundQuick, cheap and accurate point-of-care testing is urgently needed to enable frequent, large-scale testing to contain COVID-19. Lateral flow tests for antigen and antibody detection are an obvious candidate for use in community-wide testing, because they are quick and cheap relative to lab-processed tests. However, their low accuracy has limited their adoption. We develop a new methodology to increase the diagnostic accuracy of a combination of cheap, quick and inaccurate index tests with correlated or discordant outcomes, and illustrate its performance on commercially available lateral flow immunoassays (LFIAs) for Sars-CoV-2 antibody detection.Methods and FindingsWe analyze laboratory test outcomes of 300 serum samples from health care workers detected with PCR-confirmed SARS-Cov-2 infection at least 21 days prior to sample collection, and 500 pre-pandemic serum samples, from a national seroprevalence survey, tested using eight LFIAs (Abbott, Biosure/Mologic, Orientgene-Menarini, Fortress, Biopanda I, Biopanda II, SureScreen and Wondfo) and Hybrid DABA as reference test. For each of 14 two-test combinations (e.g., Abbott, Fortress) and 16 three-test combinations (e.g., Abbott, Fortress, Biosure/Mologic) used on at least 100 positive and 100 negative samples, we classify an outcome sequence – e.g., (+,–) for (Abbott, Fortress) – as positive if its combination positive predictive value (CPPV) exceeds a given threshold, set between 0 and 1. Our main outcome measures are the sensitivity and specificity of different classification rules for classifying the outcomes of a combination test. We define testing possibility frontiers which represent sensitivity and false positive rates for different thresholds. The envelope of frontiers further enables test selection.The eight index tests individually meet neither the UK Medicines and Healthcare Products Regulatory Agency’s 98% sensitivity and 98% specificity criterion, nor the US Center for Disease Control’s 99.5% specificity criterion. Among these eight tests, the highest single-test LFIA specificity is 99.4% (with a sensitivity of 65.2%) and the highest single-test LFIA sensitivity is 93.4% (with a specificity of 97.4%). Using our methodology, a two-test combination meets the UK Medicines and Healthcare Products Regulatory Agency’s criterion, achieving sensitivity of 98.4% and specificity of 98.0%. While two-test combinations meeting the US Center for Disease Control’s 99.5% specificity criterion have sensitivity below 83.6%, a three-test combination delivers a specificity of 99.6% and a sensitivity of 95.8%.ConclusionsCurrent CDC guidelines suggest combining tests, noting that “performance of orthogonal testing algorithms has not been systematically evaluated” and highlighting discordant outcomes. Our methodology combines available LFIAs to meet desired accuracy criteria, by identifying testing possibility frontiers which encompass benchmarks, enabling cost savings. Our methodology applies equally to antigen testing and can greatly expand testing capacity through combining less accurate tests, especially for use cases needing quick, accurate tests, e.g., entry to public spaces such as airports, nursing homes or hospitals.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3