Effect of differences in mechanical stress in vivo on the onset and progression of knee osteoarthritis

Author:

Arakawa Kohei,Takahata Kei,Oka Yuichiro,Ozone Kaichi,Nakagaki Sumika,Enomoto Saaya,Murata Kenji,Kanemura Naohiko,Kokubun Takanori

Abstract

ABSTRACTObjectiveThe effect of the type of mechanical stress on OA onset has not been clarified. The aim of this study was to establish a new model that reproduces the type and increase and decrease of mechanical stress in vivo and to clarify the differences in the mechanism of knee OA onset and progression among the models.DesignTo reproduce the difference in mechanical stress, we used the anterior cruciate ligament transection (ACL-T) model and the destabilization of the medial meniscus (DMM) model. In addition, we created a controlled abnormal tibial translation (CATT) model and a controlled abnormal tibial rotation (CATR) model that suppressed the joint instability of the ACL-T and DMM model, respectively. These four models reproduced the increase and decrease in shear force due to joint instability and compressive stress due to meniscal dysfunction. We performed joint instability analysis with soft X-ray, micro computed tomography analysis, histological analysis, and immunohistological analysis in 4 and 6 weeks.ResultsJoint instability decreased in the CATT and CATR groups. The meniscus deviated in the DMM and CATR groups. Chondrocyte hypertrophy increased in the ACL-T and DMM groups with joint instability. In the subchondral bone, bone resorption was promoted in the ACL-T and CATT groups, and bone formation was promoted in the DMM and CATR groups.ConclusionsIncreased shear force causes articular cartilage degeneration and osteoclast activation in the subchondral bone. In contrast, increased compressive stress promotes bone formation in the subchondral bone earlier than articular cartilage degeneration occurs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3