Author:
Hanna David A.,Moore Courtney M.,Liu Liu,Yuan Xiaojing,Fleischhacker Angela S.,Hamza Iqbal,Ragsdale Stephen W.,Reddi Amit R.
Abstract
AbstractHeme oxygenases (HO) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms: inducible HO-1, which is up-regulated in response to various stressors, including excess heme, and constitutive HO-2. While much is known about the regulation and physiological function of HO-1, comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is largely dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or over-expressed HO-2, and various HO-2 mutant alleles, we found that endogenous heme is too limiting to support HO-2 catalyzed heme degradation. Rather, we discovered that a novel role for HO-2 is to bind and buffer labile heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor in control of heme bioavailability. When heme is in excess, HO-1 is induced and both HO-2 and HO-1 can provide protection from heme toxicity by enzymatically degrading it. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with the labile heme pool being oxidized, thereby providing new insights into heme trafficking and signaling.
Publisher
Cold Spring Harbor Laboratory