Structural basis for the context-specific action of classic peptidyl transferase inhibitors

Author:

Syroegin Egor A.,Flemmich Laurin,Klepacki Dorota,Vazquez-Laslop Nora,Micura Ronald,Polikanov Yury S.ORCID

Abstract

ABSTRACTRibosome-targeting antibiotics serve both as powerful antimicrobials and as tools for studying the ribosome. The ribosomal catalytic site, the peptidyl transferase center (PTC), is targeted by a large number of various drugs. The classical and best-studied PTC-acting antibiotic chloramphenicol, as well as the newest clinically significant linezolid, were considered indiscriminate inhibitors of every round of peptide bond formation, presumably inhibiting protein synthesis by stalling ribosomes at every codon of every gene being translated. However, it was recently discovered that chloramphenicol or linezolid, and many other PTC-targeting drugs, preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms and structural bases that underlie this phenomenon of context-specific action of even the most basic ribosomal antibiotics, such as chloramphenicol, are unknown. Here we present high-resolution structures of ribosomal complexes, with or without chloramphenicol, carrying specific nascent peptides that support or negate the drug action. Our data suggest that specific amino acids in the nascent chains directly modulate the antibiotic affinity to the ribosome by either establishing specific interactions with the drug molecule or obstructing its placement in the binding site. The model that emerged from our studies rationalizes the critical importance of the penultimate residue of a growing peptide for the ability of the drug to stall translation and provides the first atomic-level understanding of context specificity of antibiotics that inhibit protein synthesis by acting upon the PTC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3