SNAREs and Synaptotagmin cooperatively determine the Ca2+ sensitivity of neurotransmitter release in fixed stoichiometry modules

Author:

McDargh Zachary A.,O’Shaughnessy Ben

Abstract

AbstractNeurotransmitter release is accomplished by a multi-component machinery including the membrane-fusing SNARE proteins and Ca2+-sensing Synaptotagmin molecules. However, the Ca2+ sensitivity of release was found to increase or decrease with more or fewer SNARE complexes at the release site, respectively, while the cooperativity is unaffected (Acuna et al., 2014; Arancillo et al., 2013), suggesting that there is no simple division of labor between these two components. To examine the mechanisms underlying these findings, we developed molecular dynamics simulations of the neurotransmitter release machinery, with variable numbers of Synaptotagmin molecules and assembled SNARE complexes at the release site. Ca2+ uncaging simulations showed that increasing the number of SNARE complexes at fixed stoichiometric ratio of Synaptotagmin to SNAREs increased the Ca2+ sensitivity without affecting the cooperativity. The physiological cooperativity of ~4-5 was reproduced with 2-3 Synaptotagmin molecules per SNARE complex, suggesting that Synaptotagmin and SNAREs cooperate in fixed stoichiometry modules. In simulations of action potential-evoked release, increased numbers of Synaptotagmin-SNARE modules increased release probability, consistent with experiment. Our simulations suggest that the final membrane fusion step is driven by SNARE complex-mediated entropic forces, and by vesicle-tethering forces mediated by the long Synaptotagmin linker domains. In consequence, release rates are increased when more SNARE complexes and Synaptotagmin monomers are present at the fusion site.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3