Abstract
AbstractHunger and satiety states drive eating behaviours via changes in brain function. The hypothalamus is a central component of the brain networks that regulate food intake. Animal research parsed the roles of the lateral hypothalamus (LH) and the medial hypothalamus (MH) in hunger and satiety respectively. Here, we examined how hunger and satiety change information flow between human LH and MH brain networks, and how these interactions are influenced by body mass index. Forty participants (15 overweight/obese) underwent two resting-state functional MRI scans: after overnight fasting (fasted state) and following a standardised meal (sated state). The direction and valence (excitatory/inhibitory influence) of information flow between the MH and LH was modelled using spectral dynamic causal modelling. Our results revealed two core networks interacting across homeostatic state and weight status: subcortical bidirectional connections between the LH, MH and the substantia nigra pars compacta (prSN), and cortical top-down inhibition from frontoparietal and temporal areas. During fasting relative to satiety, we found higher inhibition between the LH and prSN, whereas the prSN received greater top-down inhibition from across the cortex. Individuals with higher BMI showed that these network dynamics occur irrespective of fasted or satiety states. Our findings reveal fasting affects brain dynamics over a distributed hypothalamic-midbrain-cortical network. This network is less sensitive to state-related fluctuations among people with obesity.
Publisher
Cold Spring Harbor Laboratory