Hypothalamic effective connectivity at rest is associated with body weight and energy homeostasis

Author:

Voigt KatharinaORCID,Andrews Zane B.ORCID,Harding Ian H.,Razi Adeel,Verdejo-Garcia Antonio

Abstract

AbstractHunger and satiety states drive eating behaviours via changes in brain function. The hypothalamus is a central component of the brain networks that regulate food intake. Animal research parsed the roles of the lateral hypothalamus (LH) and the medial hypothalamus (MH) in hunger and satiety respectively. Here, we examined how hunger and satiety change information flow between human LH and MH brain networks, and how these interactions are influenced by body mass index. Forty participants (15 overweight/obese) underwent two resting-state functional MRI scans: after overnight fasting (fasted state) and following a standardised meal (sated state). The direction and valence (excitatory/inhibitory influence) of information flow between the MH and LH was modelled using spectral dynamic causal modelling. Our results revealed two core networks interacting across homeostatic state and weight status: subcortical bidirectional connections between the LH, MH and the substantia nigra pars compacta (prSN), and cortical top-down inhibition from frontoparietal and temporal areas. During fasting relative to satiety, we found higher inhibition between the LH and prSN, whereas the prSN received greater top-down inhibition from across the cortex. Individuals with higher BMI showed that these network dynamics occur irrespective of fasted or satiety states. Our findings reveal fasting affects brain dynamics over a distributed hypothalamic-midbrain-cortical network. This network is less sensitive to state-related fluctuations among people with obesity.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Hypothalamic control of food intake in rats and cats;The Yale Journal of Biology and Medicine,1951

2. Toward a Wiring Diagram Understanding of Appetite Control;Neuron,2017

3. MRI atlas of the human hypothalamus;NeuroImage (Orlando, Fla,2012

4. Neural control of appetite: cross-talk between homeostatic and non-homeostatic systems

5. The neurobiology of food intake in an obesogenic environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3