Author:
Haider Madiha,Anand Vivek,Dholakia Dhwani,Enayathullah M. Ghalib,Parekh Yash,Ram Sushma,Kumari Surekha,Anmol ,Bokara Kiran Kumar,Sharma Upendra,Prasher Bhavana,Mukerji Mitali
Abstract
AbstractBackgroundViral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present.PurposeHerbal medicines have been a source of various antiviral compounds. An accelerated repurposing potential of antiviral herbs can provide usable drugs and identify druggable targets. In this study, we dissect the anti-coronavirus activity of Cissampelos pareira L (Cipa). using an integrative approach.MethodsWe analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map (https://clue.io/). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed.ResultsSeveral predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa.
Publisher
Cold Spring Harbor Laboratory