Inositolphosphate glycans and a fucosylated xyloglucan oligosaccharide are accumulated upon Arabidopsis thaliana/ Botrytis cinerea infection

Author:

Voxeur AlineORCID,Sechet Julien,Vernhettes SamanthaORCID

Abstract

AbstractIn mammals, insulin is involved in controlling blood glucose levels and its role in modulating immunity is being more and more documented. This hormone promotes the release of inositolphosphate glycans (IPG) which act as mediators. In plants, one IG has already been identified in plant culture cells (Smith and Fry, 1999; Smith et al., 1999) but, to our knowledge, no IPG have been yet identified. Here, we discovered 7 IPG that are accumulated upon Arabidopsis thaliana-Botrytis cinerea interaction, concomitantly with oligogalacturonides and a fucosylated xyloglucan oligosaccharide. Further structural characterization showed that they come from the hydrolysis of polar heads of Serie A to H glycosylinositol phosphorylceramides presumably via a phospholipase C activity. Taken together with the emerging role of insulin as immune regulator, these results question the role of IPG as damage associated molecular pattern both in animal and plant kingdoms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3