Heparan Sulfate-dependent RAGE oligomerization is indispensable for pathophysiological functions of RAGE

Author:

Li Miaomiao,Ong Chih Yean,Langouët-Astrié Christophe J,Tan Lisi,Verma Ashwni,Yang Yimu,Zhang Xiaoxiao,Shah Dhaval K.,Schmidt Eric P.,Xu DingORCID

Abstract

ABSTRACTRAGE, a druggable inflammatory receptor, is known to function as an oligomer but the exact oligomerization mechanism remains poorly understood. Previously we have shown that heparan sulfate (HS) plays an active role in RAGE oligomerization. To understand the physiological significance of HS-induced RAGE oligomerization in vivo, we generated RAGE knock-in mice (RageAHA/AHA) by introducing point mutations to specifically disrupt HS–RAGE interaction. The RAGE mutant demonstrated normal ligand-binding but impaired capacity of HS-binding and oligomerization. Remarkably, RageAHA/AHA mice phenocopied Rage−/− mice in two different pathophysiological processes, namely bone remodeling and neutrophil-mediated liver injury, which demonstrates that HS-induced RAGE oligomerization is essential for RAGE signaling. Our findings suggest that it should be possible to block RAGE signaling by inhibiting HS-RAGE interaction. To test this, we generated a monoclonal antibody that targets the HS-binding site of RAGE. This antibody blocks RAGE signaling in vitro and in vivo, recapitulating the phenotype of RageAHA/AHA mice. By inhibiting HS-RAGE interaction genetically and pharmacologically, our work validated an alternative strategy to antagonize RAGE. Finally, we have performed RNA-seq analysis of neutrophils and lungs and found that while Rage−/− mice had a broad alteration of transcriptome in both tissues compared to wild-type mice, the changes of transcriptome in RageAHA/AHA mice were much more restricted. This unexpected finding suggests that by preserving the expression of RAGE protein (in a dominant-negative form), RageAHA/AHA mouse might represent a cleaner genetic model to study physiological roles of RAGE in vivo compared to Rage−/− mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3