Author:
Lewis Jo E,Woodward Orla RM,Smith Christopher A,Adriaenssens Alice E,Billing Lawrence,Brighton Cheryl,Phillips Benjamin U,Tadross John A,Kinston Sarah J,Ciabatti Ernesto,Göttgens Berthold,Tripodi Marco,Hornigold David,Baker David,Gribble Fiona M,Reimann Frank
Abstract
AbstractRelaxin/insulin-like-family peptide receptor-4 (RXFP4), the cognate receptor for insulin-like peptide 5 (INSL5), has previously been implicated in feeding behaviour. To explore Rxfp4 expression and physiology, we generated Rxfp4-Cre mice. Whole body chemogenetic activation (Dq) or inhibition (Di) of Rxfp4-expressing cells using designer receptors exclusively activated by designer drugs (DREADDs) altered food intake and preference. Potentially underlying this effect, Rxfp4-expressing neurons were identified in nodose and dorsal root ganglia and the central nervous system, including the ventromedial hypothalamus (VMH). Single-cell RNA-sequencing defined a cluster of VMH Rxfp4-labelled cells expressing Esr1, Tac1 and Oxtr. VMH-restricted activation of Rxfp4-expressing (RXFP4VMH) cells using AAV-Dq recapitulated the whole body Dq feeding phenotype. Viral tracing demonstrated RXFP4VMH neural projections to the bed nucleus of the stria terminalis, paraventricular hypothalamus, paraventricular thalamus, central nucleus of the amygdala and parabrachial nucleus. These findings identify hypothalamic RXFP4 signalling as a key regulator of food intake and preference.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献