Abstract
AbstractMonogenic Parkinson’s Disease can be caused by a mutation in the leucine-rich repeat kinase 2 (LRRK2) gene, causing a late-onset autosomal dominant inherited form of Parkinson’s Disease. The function of the LRRK2 gene is incompletely understood, but several in vitro studies have reported that LRRK2-G2019S mutations affect neurite branching, calcium homeostasis and mitochondrial function, but thus far, there have been no reports of effects on electrophysiological activity. We assessed the neuronal activity of induced pluripotent stem cell derived neurons from Parkinson’s Disease patients with LRRK2-G2019S mutations and isogenic controls. Neuronal activity of spontaneously firing neuronal populations was recorded with a fluorescent calcium-sensitive dye (Fluo-4) and analysed with a novel image analysis pipeline that combined semi-automated neuronal segmentation and quantification of calcium transient properties. Compared with controls, LRRK2-G2019S mutants have shortened inter-spike intervals and an increased rate of spontaneous calcium transient induction.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献