With No Lysine Kinase 1 Promotes Right Ventricular Dysfunction Via Glucotoxicity

Author:

Prisco Sasha Z.ORCID,Eklund MeganORCID,Thenappan ThenappanORCID,Prins Kurt W.ORCID

Abstract

AbstractObjectivesInvestigate how WNK1 inhibition modulates glucotoxicity, mitochondrial/peroxisomal protein regulation and metabolism, and right ventricular (RV) function in pulmonary arterial hypertension (PAH). Determine how hypochloremia impacts RV function in PAH patients.BackgroundIn PAH-induced RV failure, GLUT1/GLUT4 expression is elevated, which increases glucose uptake and glycolytic flux to compensate for mitochondrial dysfunction. However, the resultant consequences of the glucose-mediated post-translational modifications (PTM), protein O-GlcNAcylation/glycation in RV failure are understudied. WNK1, a chloride-sensitive kinase, increases GLUT1/GLUT4 expression in skeletal muscle, but its regulation in RV dysfunction is unexplored.MethodsRats were treated with WNK463 (small molecule WNK inhibitor) or vehicle starting two weeks after monocrotaline injection. Immunoblots quantified protein abundance/PTMs. Mitochondrial/peroxisomal proteomics and global metabolomics evaluated glucose metabolism and mitochondrial/peroxisomal function. Pulmonary vascular and cardiac histology, echocardiography, and pressure-volume loop analysis quantified RV function and PAH severity. Finally, the relationship between hypochloremia, a WNK1-activating state, and RV function was evaluated in 217 PAH patients.ResultsWNK463 decreased WNK1/GLUT1/GLUT4 expression, normalized glucose metabolite levels, which dampened excess protein O-GlcNAcylation/glycation. Integration of RV mitochondrial/peroxisomal proteomics and metabolomics identified fatty acid oxidation (FAO) as the most dysregulated metabolic pathway. WNK463 enhanced FAO as demonstrated by increased expression of mitochondrial FAO proteins and normalization of RV acylcarnitines. WNK463 reduced glutaminolysis induction and lipotoxicity, two secondary consequences of diminished FAO. WNK463 augmented RV systolic and diastolic function independent of pulmonary vascular disease severity. In PAH patients, hypochloremia resulted in more severe RV dysfunction.ConclusionsWNK463 combated RV glucotoxicity and impaired FAO, which directly improved RV function.HighlightsSmall molecule inhibition of WNK1 (WNK463) signaling mitigates upregulation of the membrane glucose channels GLUT1 and GLUT4, restores levels of several glucose metabolites, and normalizes protein O-GlcNAcylation and glycation in the RV.Quantitative proteomics of RV mitochondrial enrichments shows WNK463 treatment prevents downregulation of mitochondrial enzymes in the tricarboxylic acid cycle, fatty acid oxidation pathway, and the electron transport chain complexes.Integration of proteomics and metabolomics analysis reveals WNK463 reduces glutaminolysis induction and lipotoxicity due to impaired fatty acid oxidationWNK463 augments RV systolic and diastolic function independent of PAH severity.Hypochloremia, a condition of predicted WNK1 activation, in PAH patients results in more severe RV dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3