Environmental RNAi-based reverse genetics in the predatory mite Neoseiulus californicus: towards improved methods of biological control

Author:

Ghazy Noureldin AbuelfadlORCID,Suzuki TakeshiORCID

Abstract

ABSTRACTThe predatory mite Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae) has been commercialized by manufacturers in the pest control industry and is used worldwide as a natural enemy of spider mites. However, because its genome has not been sequenced, reverse genetics techniques that could be used to analyze gene function have not been established. Here we partially sequenced the gene that encodes the vacuolar-type H+-ATPase (V-ATPase), an ATP-dependent proton pump, in N. californicus (NcVATPase) and then conducted a functional analysis using environmental RNA interference (eRNAi) by orally administering sequence-specific exogenous dsRNA (dsRNA-NcVATPase) to larvae and adult females. The larvae treated with dsRNA-NcVATPase took longer to develop and had lower survivorship, fecundity, and offspring viability at the adult stage than those treated with a control dsRNA. Adult females treated with dsRNA-NcVATPase showed significant reductions in survival, fecundity, and prey consumption, and their endogenous gene expression level of NcVATPase was reduced by approximately 65% compared with the control. Our findings suggest that the NcVATPase gene, silencing of which inhibits feeding and reproduction, is an excellent biomarker for investigating the eRNAi mechanism in N. californicus. The highly efficient experimental system of eRNAi established in this study paves the way for applied research using eRNAi to enhance the predatory ability of N. californicus.Key messageEnvironmental RNAi-inducing double-stranded RNAs have the potential to improve biological control as well as biopesticide applications.We investigated the efficacy of eRNAi against the predatory mite Neoseiulus californicus, a major natural enemy of spider mites.Oral administration of dsRNA targeting NcVATPase decreased the gene expression level, developmental time, survival, fecundity, and prey consumption.Neoseiulus californicus, which was found to have the high eRNAi effects, can be used as a model for the study on eRNAi-mediated improvement of biological control.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3