Klarigi: Explanations for Semantic Groupings

Author:

Slater Luke TORCID,Williams John A,Karwath Andreas,Russell Sophie,Pendleton Samantha C,Fanning Hilary,Ball Simon,Schofield Paul,Hoehndorf RobertORCID,Gkoutos Georgios V

Abstract

AbstractSummarySemantic annotation facilitates the use of background knowledge in analysis. This includes approaches that sort entities into groups, clusters, or assign labels or outcomes that are typically difficult to derive semantic explanations for. We introduce Klarigi, a tool that creates semantic explanations for groups of entities described by ontology terms implemented in a manner that balances multiple scoring heuristics. We demonstrate Klarigi by using it to identify characteristic terms for text-derived phenotypes of emergency admissions for two frequently conflated diagnoses, pulmonary embolism and pneumonia. Klarigi provides a universal method by which entity groups or labels can be explained semantically, and thus contributes to improved explainability of analysis methods.Availability and ImplementationKlarigi is freely available under an open source licence at http://github.com/reality/klarigi. Supplementary data is available with this article.Contactl.slater.1@bham.ac.uk

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3