Hexapeptide induces M2 macrophage polarization via the JAK1/STAT6 pathway to promote angiogenesis in bone repair

Author:

Han Xinyun,Hu Junxian,Zhao Wenbo,Lu Hongwei,Dai Jingjin,He Qingyi

Abstract

AbstractAngiogenesis is essential for successful bone defect repair. In normal tissue repair, the physiological inflammatory response is the main regulator of angiogenesis through the activity of macrophages and the cytokines secreted by them. In particular, M2 macrophages which secrete high levels of PDGF-BB are typically considered to promote angiogenesis. A hexapeptide [WKYMVm, (Trp-Lys-Tyr-Met-Val-D-Met-NH2)] has been reported to modulate inflammatory activities. However, the underlying mechanisms by which WKYMVm regulates macrophages remain unclear. In this study, the possible involvement by which WKYMVm induces the polarization of macrophages and affects their behaviors was evaluated. In vitro results showed that macrophages were induced to an M2 rather than M1 phenotype and the M2 phenotype was enhanced by WKYMVm through activation of the JAK1/STAT6 signaling pathway. It was also found that WKYMVm played an important role in the PDGF-BB production increase and proangiogenic abilities in M2 macrophages. Consistent with the results in vitro, the elevated M2/M0 ratio induced by WKYMVm enhanced the formation of new blood vessels in a femoral defect mouse model. In summary, these findings suggest that WKYMVm could be a promising alternative strategy for angiogenesis in bone repair by inducing M2 macrophage polarization.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Stem cell technology for bone regeneration: current status and potential applications;Stem cells and cloning : advances and applications,2015

2. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits;Regenerative medicine,2017

3. Clinical Evaluation of Bone Strength and Fracture Risk;Current osteoporosis reports,2017

4. Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration

5. Angiogenesis and bone repair

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3