Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 and ALYREF as new candidate risk genes

Author:

Qiao Lu,Xu Le,Yu Lan,Wynn Julia,Hernan Rebecca,Zhou Xueya,Farkouh-Karoleski Christiana,Krishnan Usha S.ORCID,Khlevner Julie,De Aliva,Zygmunt Annette,Crombleholme Timothy,Lim Foong-Yen,Needelman Howard,Cusick Robert A.,Mychaliska George B.,Warner Brad W.,Wagner Amy J.,Danko Melissa E.,Chung Dai,Potoka Douglas,Kosiński Przemyslaw,McCulley David J.,Elfiky Mahmoud,Azarow Kenneth,Fialkowski Elizabeth,Schindel David,Soffer Samuel Z.,Lyon Jane B.,Zalieckas Jill M.,Vardarajan Badri N.,Aspelund Gudrun,Duron Vincent P.,High Frances A.,Sun Xin,Donahoe Patricia K.,Shen Yufeng,Chung Wendy K.

Abstract

AbstractCongenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (Lon Peptidase 1, Mitochondrial) and ALYREF (Aly/REF Export Factor) as novel candidate CDH genes based on de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 cases and 11,220 ancestry-matched population controls and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in familial cases. Approximately 3% of our CDH cohort was heterozygous with ultra-rare predicted damaging variants in LONP1 who have a range of clinical phenotypes including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium specific deletion of Lonp1 die immediately after birth and have reduced lung growth and branching that may at least partially explain the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3