RosettaSurf - a surface-centric computational design approach

Author:

Scheck AndreasORCID,Rosset StéphaneORCID,Defferrard MichaëlORCID,Loukas AndreasORCID,Bonet JaumeORCID,Vandergheynst PierreORCID,Correia Bruno EORCID

Abstract

AbstractProteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.Author SummaryFinely orchestrated protein-protein interactions are at the heart of virtually all fundamental cellular processes. Altering these processes or encoding new functions in proteins has been a long-standing goal in computational protein design.Protein design methods commonly rely on scoring functions that seek to identify amino acid sequences that optimize structural configurations of atoms while minimizing a variety of physics-based and statistical terms. The objectives of the large majority of computational design protocols have been focused on obtaining a predefined structural conformation. However, routinely introducing a functional aspect on designer proteins has been more challenging.Our results suggest that the molecular surface features can be a useful optimization parameter to guide the design process towards functional surfaces that mimic known protein binding sites and interact with their intended targets. Specifically, we demonstrate that our design method can optimize experimental libraries through computational screening, creating a basis for highly specific protein binders, as well as design a potent immunogen that engages with site-specific antibodies. The ability to create proteins with novel functions will be transformative for biomedical applications, providing many opportunities for the design of novel immunogens, protein components for synthetic biology, and other protein-based biotechnologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3