Computational Neuroimaging of Cognition-Emotion Interactions: Affective and Task-similar Interference Differentially Impact Working Memory

Author:

Ji Jie LisaORCID,Repovs GregaORCID,Yang Genevieve J.,Savic Aleksandar,Murray John D.ORCID,Anticevic Alan

Abstract

ABSTRACTCognition depends on resisting interference and responding to relevant stimuli. Distracting information, however, varies based on content, requiring distinct filtering mechanisms. For instance, affective information captures attention, disrupts performance and attenuates activation along frontal-parietal regions during cognitive engagement, while recruiting bottom-up regions. Conversely, distraction matching task features (i.e. task-similar) increases fronto-parietal activity. Neural mechanisms behind unique effects of different distraction on cognition remain unknown. Using fMRI in 45 adults, we tested whether affective versus task-similar interference show distinct signals during delayed working memory (WM). We found robust differences between distractor types along fronto-parietal versus affective-ventral neural systems. We studied a hypothesized mechanism of this effect via a biophysically-based computational WM model that implements a functional antagonism between affective/cognitive neural ‘modules’. This architecture reproduced experimental effects: task-similar distractors increased, whereas affective distractors attenuated cognitive module activity while increasing affective module signals. The model architecture suggested that task-based connectivity may be altered in affective-ventral vs. fronto-parietal networks depending on distractor type. Empirically, affective interference significantly increased connectivity within the affective-ventral network, but reduced connectivity between affective-ventral and fronto-parietal networks, which predicted WM performance. These findings detail an antagonistic architecture between cognitive and affective systems, capable of flexibly engaging distinct distractions during cognition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3