Author:
Savini Marzia,Duffy Jonathon D.,Folick Andrew,Lee Yi-Tang,Hu Pei-Wen,Neve Isaiah A.,Jin Feng,Zhang Qinghao,Tillman Matthew,Ye Youqiong,Mair William B.,Wang Jin,Han Leng,Ortlund Eric A.,Wang Meng C.
Abstract
AbstractLysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in aging-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate aging remains unclear. Here, we report a fat-to-neuron lipid signaling pathway induced by lysosomal metabolism and its longevity promoting role in Caenorhabditis elegans. We discovered that lysosomal lipolysis in peripheral fat storage tissue up-regulates the neuropeptide signaling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation requires the secretion from the fat storage tissue of a lipid chaperone protein LBP-3 and polyunsaturated fatty acids (PUFAs). LBP-3 binds to specific PUFAs, and acts through a nuclear hormone receptor NHR-49 and neuropeptide NLP-11 in neurons to extend lifespan. Together, these results reveal lysosomes as a signaling hub to coordinate metabolism and aging, and a lysosomal signaling mechanism that mediates intertissue communication to promote longevity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献