RNA-Seq data analysis for Planarian with tensor decomposition-based unsupervised feature extraction

Author:

Kashima MakotoORCID,Kumagai Nobuyoshi,Hirata HiromiORCID,Taguchi Y-h.ORCID

Abstract

ABSTRACTRNA-Seq data analysis of non-model organisms is often difficult because of the lack of a well-annotated genome. In model organisms, after short reads are mapped to the genome, it is possible to focus on the analysis of regions well-annotated regions. However, in non-model organisms, contigs can be generated by de novo assembling. This can result in a large number of transcripts, making it difficult to easily remove redundancy. A large number of transcripts can also lead to difficulty in the recognition of differentially expressed transcripts (DETs) between more than two experimental conditions, because P-values must be corrected by considering multiple comparison corrections whose effect is enhanced as the number of transcripts increases. Heavily corrected P-values often fail to take sufficiently small P-values as significant. In this study, we applied a recently proposed tensor decomposition (TD)-based unsupervised feature extraction (FE) to the RNA-seq data obtained for a non-model organism, Planarian; we successfully obtained a limited number of transcripts whose expression was altered between normal and defective samples as well as during time development. TD-based unsupervised FE is expected to be an effective tool that can identify a limited number of DETs, even when a poorly annotated genome is available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3