Abstract
ABSTRACTReleases of sterile males are the gold standard for many insect population control programs, and precise sex sorting to remove females prior to male releases is essential to the success of these operations. To advance traditional methods for scaling the generation of sterile males, we previously described a CRISPR-mediated precision-guided sterile insect technique (pgSIT), in which Cas9 and gRNA strains are genetically crossed to generate sterile males for release. While effective at generating F1 sterile males, pgSIT requires a genetic cross between the two parental strains which requires maintenance and sexing of two strains in a factory. Therefore, to further advance pgSIT by removing this crossing step, here we describe a next-generation Temperature-Inducible pgSIT (TI-pgSIT) technology and demonstrate its proof-of-concept in Drosophila melanogaster. Importantly, we were able to develop a true-breeding strain for TI-pgSIT that eliminates the requirement for sex sorting, a feature that may help further automate production at scale.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献