Depth of sedation with dexmedetomidine modulates cortical excitability non-linearly

Author:

Cardone PaoloORCID,Bodart Olivier,Kirsch Murielle,Sanfilippo Julien,Virgillito Alessandra,Martial CharlotteORCID,Simon JessicaORCID,Wannez Sarah,Sanders Robert D.,Laureys StevenORCID,Massimini MarcelloORCID,Bonhomme VincentORCID,Gosseries OliviaORCID

Abstract

AbstractBackgroundCortical excitability changes across conscious states, being higher in unconsciousness compared to normal wakefulness. Anaesthesia offers controlled manipulation to investigate conscious processes and underlying brain dynamics. Among commonly used anaesthetic agents, dexmedetomidine (DEX) effects are not completely known. In this study, we investigated cortical excitability as a function of DEX sedation depth.MethodsTranscranial magnetic stimulation coupled with electroencephalography was recorded in 20 healthy subjects undergoing DEX sedation in four conditions (baseline, light sedation, deep sedation, recovery). Frontal and parietal cortices were stimulated using a neuronavigation system. Cortical excitability was inferred by slope, amplitude, positive and negative peak latencies of the first component (0-30 ms) of the TMS-evoked potential. Four Generalized Linear Mixed Models (GLMM) were used to test the effect of condition and brain region over cortical excitability.ResultsDexmedetomidine modulated amplitude (P<0.001), slope (P=0.0001) and positive peak (P=0.042), while the targeted brain region affected amplitude (P<0.001), slope (P<0.001), and negative peak (P=0.001). The interaction between dexmedetomidine and region had an effect over amplitude (P=0.004), and slope (P=0.009) such that cortical excitability was higher during all conditions where DEX was present as compared to the baseline.ConclusionsCortical excitability changes non-linearly as a function of the depth of DEX sedation, with a paradoxical non dose-dependent increase. The effect is region-specific, being present in the frontal but not in the parietal region. Future research should extend the current results with other anaesthetics to better understand the link between cortical excitability and depth of sedation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3