Abstract
AbstractMaximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy consisting of a surface-conjugated cysteine-tagged protein G molecules that immobilize Immunoglobulin G (IgG) antibodies via the Fc domain to capture circulating endothelial colony-forming cells (ECFCs). The cysteine-tagged protein G was grafted onto aminated substrates at different concentrations as detected by an enzyme-linked immunosorbent assay and fluorescence imaging. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces and higher antibody surface concentrations were achieved compared to passive adsorption methods. Surfaces with immobilized antibodies targeting endothelial surface proteins, such as CD144, significantly enhanced the capture of circulating ECFCs in vitro compared to surfaces with non-endothelial specific antibodies such as anti-CD14. This work presents a potential avenue for enhancing the clinical performance of vascular implants by using covalent grafting of protein G to immobilize IgG antibodies more effectively.Table of ContentsAntibody immobilization via surface-conjugated recombinant cysteine-protein G provides an effective approach to capture circulating therapeutic cells.
Publisher
Cold Spring Harbor Laboratory