Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations

Author:

Livesey Benjamin J.ORCID,Marsh Joseph A.ORCID

Abstract

AbstractTo deal with the huge number of novel protein-coding variants identified by genome and exome sequencing studies, many computational variant effect predictors (VEPs) have been developed. Such predictors are often trained and evaluated using different variant datasets, making a direct comparison between VEPs difficult. In this study, we use 31 previously published deep mutational scanning (DMS) experiments, which provide quantitative, independent phenotypic measurements for large numbers of single amino acid substitutions, in order to benchmark and compare 46 different VEPs. We also evaluate the ability of DMS measurements and VEPs to discriminate between pathogenic and benign missense variants. We find that DMS experiments tend to be superior to the top-ranking predictors, demonstrating the tremendous potential of DMS for identifying novel human disease mutations. Among the VEPs, DeepSequence clearly stood out, showing both the strongest correlations with DMS data and having the best ability to predict pathogenic mutations, which is especially remarkable given that it is an unsupervised method. We further recommend SNAP2, DEOGEN2, SNPs&GO and REVEL based upon their performance in these analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3