Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement

Author:

Audano Peter A.ORCID,Beck Christine R.ORCID

Abstract

High-quality genome assemblies and sophisticated algorithms have increased sensitivity for a wide range of variant types, and breakpoint accuracy for structural variants (SVs, ≥50 bp) has improved to near base pair precision. Despite these advances, many SV breakpoint locations are subject to systematic bias affecting variant representation. To understand why SV breakpoints are inconsistent across samples, we reanalyzed 64 phased haplotypes constructed from long-read assemblies released by the Human Genome Structural Variation Consortium (HGSVC). We identify 882 SV insertions and 180 SV deletions with variable breakpoints not anchored in tandem repeats (TRs) or segmental duplications (SDs). SVs called from aligned sequencing reads increase breakpoint disagreements by 2×–16×. Sequence accuracy had a minimal impact on breakpoints, but we observe a strong effect of ancestry. We confirm that SNP and indel polymorphisms are enriched at shifted breakpoints and are also absent from variant callsets. Breakpoint homology increases the likelihood of imprecise SV calls and the distance they are shifted, and tandem duplications are the most heavily affected SVs. Because graph genome methods normalize SV calls across samples, we investigated graphs generated by two different methods and find the resulting breakpoints are subject to other technical biases affecting breakpoint accuracy. The breakpoint inconsistencies we characterize affect ∼5% of the SVs called in a human genome and can impact variant interpretation and annotation. These limitations underscore a need for algorithm development to improve SV databases, mitigate the impact of ancestry on breakpoints, and increase the value of callsets for investigating breakpoint features.

Funder

National Institutes of Health (NIH) National Institute of General Medical Sciences

NIH National Cancer Institute

NIH National Human Genome Research Institute

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3