Development of vascular myogenic responses in zebrafish

Author:

Bahrami NabilaORCID,Childs Sarah J.ORCID

Abstract

ABSTRACTThe vascular system is placed under enormous stress at the onset of cardiac contractility and blood flow. Nascent blood vessel tubes initially consist of a thin endothelial wall and rapidly acquire support from mural cells (pericytes and vascular smooth muscle cells; vSMCs). Following their association with vessels, mural cells acquire vasoactive ability (contraction and relaxation). However, we have little information as to when this vasoactivity first develops, and the extent to which each mural cell type contributes to vascular tone regulation during development. For the first time in an in vivo system, we highlight the dynamic changes in mural cell vasoactivity during development. We assess mural cell vasoactivity in the early zebrafish cerebral vasculature in response to pharmacological agents. We determine that pericyte-covered vessels constrict and dilate at 4 days post fertilization (dpf) but not at 6 dpf. The prostaglandin EP4 receptor contributes to pericyte-covered vessel dilation at 4 dpf. In contrast, vSMC-covered vessels constrict but do not dilate at 4 dpf. At 6 dpf, vSMC-covered vessels continue to constrict but only dilate from a pre-constricted state. Using genetic ablation, we demonstrate that mural cell contraction and relaxation is an active response by pericytes and vSMCs. Thus, we show that both pericytes and vSMCs have the ability to regulate cerebral vascular tone but at different stages of development. Pericytes are involved in regulating vessel diameters prior to the maturation of the vSMCs. Once vSMCs mature, pericytes are no longer active, and only vSMCs regulate vascular tone in the developing embryonic brain of zebrafish. The onset of vasoactivity of vSMCs corresponds to the development of increased neuronal activity and neurovascular coupling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pericytes in Vascular Development;Current Tissue Microenvironment Reports;2020-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3