Transcriptome and translatome profiling and translational network analysis during seed maturation reveals conserved transcriptional and distinct translational regulatory patterns

Author:

Bai BingORCID,van der Horst Sjors,Delhomme Nicolas,Robles Alexander Vergara,Bentsink Leónie,Hanson Johannes

Abstract

AbstractSeed maturation is an important plant developmental process that follows embryo development. It is associated with a series of physiological changes such as the establishment of desiccation tolerance, seed longevity and seed dormancy. However, the translational dynamics associated with seed maturation, especially its connection with seed germination remains largely elusive. Here transcriptome and translatome profiling were performed during seed maturation. During seed maturation we observed a gradual disappearance of polysomes and a relative increase of monosomes, indicating a gradual reduction of global translation. Comparing the levels of polysomal associated mRNAs with total mRNA levels showed that thousands of genes are translationally regulated at early sates of maturation, as judged by dramatic changes in polysomal occupancy. By including previous published data from germination and seedling establishment, a translational regulatory network: SeedTransNet was constructed. Network analysis identified hundreds of gene modules with distinct functions and transcript sequence features indicating the existence of separate translational regulatory circuits possibly acting through specific regulatory elements. The regulatory potential of one such element was confirmed in vivo. The network identified several seed maturation associated genes as central nodes, and we could confirm the importance of many of these hub genes with a maturation associated seed phenotype by mutant analysis. One of the identified regulators an AWPM19 family protein PM19-Like1 (PM19L1) was shown to regulate seed dormancy and longevity. This putative RBP also affects the transitional regulation of one its, by the SeedTransNet identified, target mRNAs. Our data shows the usefulness of SeedTransNet in identifying regulatory pathways during seed phase transitions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reproduction Multitasking: The Male Gametophyte;Annual Review of Plant Biology;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3