Does Vaping Increase the Likelihood of SARS-CoV-2 Infection? Paradoxically Yes and No

Author:

Phandthong Rattapol,Wong Man,Song Ann,Martinez Teresa,Talbot Prue

Abstract

AbstractData on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Evidence indicates that EC aerosols or nicotine increase ACE2, SARS-CoV-2 virus receptors, which increase virus binding and susceptibility. Our objectives were to determine if EC aerosols increased SARS-CoV-2 infection of human bronchial epithelial cells and to identify the causative chemical(s). A 3D organotypic model (EpiAirway™) in conjunction with air liquid interface (ALI) exposure was used to test the effects of aerosols produced from JUUL™ “Virginia Tobacco” and BLU™ ECs, or individual chemicals (nicotine, propylene glycol, vegetable glycerin (PG/VG), and benzoic acid) on infection using SARS-CoV-2 pseudoparticles. Exposure of EpiAirway™ to JUUL™ aerosols increased ACE2, while BLU™ and lab-made EC aerosols containing nicotine increased ACE2 levels and TMPRSS2 activity, a spike protease that enables viral-cell fusion. Pseudoparticle infection of EpiAirway™ increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU™ ECs. JUUL™ EC aerosols did not increase infection above controls. The baseline level of infection in JUUL™ treated aerosol groups was attributed to benzoic acid, which mitigated the enhanced infection caused by PG/VG or nicotine. The benzoic acid protection from enhanced infection continued at least 48 hours after exposure. TMPRSS2 activity was significantly correlated with e-liquid pH, which in turn was significantly correlated with infection, with lower pH blocking PG/VG and nicotine-induced-enhanced infection. While ACE2 levels increased in EpiAirway™ tissues exposed to EC aerosols, infection depended on the ingredients of the e-liquids. PG/VG and nicotine enhanced infection, an effect that was mitigated by benzoic acid.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3