Improving estimates of waning immunity rates in stochastic SIRS models with a hierarchical framework

Author:

Alahakoon PunyaORCID,McCaw James M.ORCID,Taylor Peter G.ORCID

Abstract

AbstractMost disease pathogens require onward transmission for their continued persistence. It is necessary to have continuous replenishment of the population of susceptibles, either through births, immigration, or waning immunity in recovered individuals.Consider the introduction of an unknown infectious disease into a fully susceptible population where it is not known how long immunity is conferred once an individual recovers. If the disease takes off, the number of infectives will typically decrease to a low level after the first major outbreak. During this period, the disease dynamics will be highly influenced by stochastic effects and there is a non-zero probability that the epidemic will die out. This is known as an epidemic fade-out. If the disease does not die out, the susceptible population may be replenished by the waning of immunity, and a second wave may start.In this study, we describe an experiment where we generated synthetic outbreak data from independent stochastic SIRS models in multiple communities. Some of the outbreaks faded-out and some did not. By conducting Bayesian parameter estimation independently on each outbreak, as well as under a hierarchical framework, we investigated if the waning immunity rate could be correctly identified. When the outbreaks were considered independently, the waning immunity rate was incorrectly estimated when an epidemic fade-out was observed. However, the hierarchical approach improved the parameter estimates. This was particularly the case for those communities where the epidemic faded out.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3