(Pro)Renin Receptor Antagonism Attenuates High-Fat-Diet–Induced Hepatic Steatosis in Non-Alcoholic Fatty Liver Disease

Author:

Gayban Ariana Julia B.,Souza Lucas,Cooper Silvana G.,Regalado Erick,Kleemann Robert,Earley Yumei Feng

Abstract

AbstractNon-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage directly related to diabetes, obesity, and metabolic syndrome. The (pro)renin receptor (PRR) has recently been demonstrated to play a role in glucose and lipid metabolism. Here, we hypothesized that inhibition of the PRR would prevent the development of diet-induced hepatic steatosis and fibrosis. To test our hypothesis, we fed wild-type mice on a C57Bl/6J background either a high-fat diet (HFD; 60% calories from fat) or normal fat diet (NFD; 10% calories from fat) with matching calories for 6 weeks. An 8-week methionine choline-deficient (MCD) diet was used to induce fibrosis in C57BL/6J mice. Two weeks following diet treatment, mice were implanted with a subcutaneous osmotic pump delivering either PRO20, a peptide PRR antagonist, or scrambled peptide (700 μg/kg/d) for 4 or 6 weeks. We found that a 6-week HFD significantly increased liver lipid accumulation, as detected by Oil Red O staining, and liver triglyceride content compared with NFD-fed mice. Importantly, PRO20 treatment significantly reduced hepatic lipid accumulation in HFD-fed mice without affecting body weight or glucose levels. Furthermore, PRR antagonism attenuated HFD-induced steatosis, particularly microvesicular steatosis. In the MCD diet model, the percentage of collagen area detected by Sirius Red staining was reduced in PRO20-treated compared with control mice. PRO20 treatment also significantly decreased levels of liver alanine aminotransferase (ALT), an indicator of liver damage, in MCD-fed mice compared with controls. Mechanistically, we found that PRR antagonism prevented HFD-induced increases in PPARγ and glycerol-3-phosphate acyltransferase 3 expression in the liver. Taken together, our findings establish the mechanism by which PRR regulates lipid metabolism in the liver and suggest the therapeutic potential of PRR antagonism for the treatment of liver steatosis and fibrosis development in NAFLD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3