PARNAS: Objectively Selecting the Most Representative Taxa on a Phylogeny

Author:

Markin AlexeyORCID,Wagle Sanket,Grover Siddhant,Vincent Baker Amy L.ORCID,Eulenstein OliverORCID,Anderson Tavis K.ORCID

Abstract

AbstractThe use of next-generation sequencing technology has enabled phylogenetic studies with hundreds of thousands of taxa. Such large-scale phylogenies have become a critical component in genomic epidemiology in pathogens such as SARS-CoV-2 and influenza A virus. However, detailed phenotypic characterization of pathogens or generating a computationally tractable dataset for detailed phylogenetic analyses requires bias free subsampling of taxa. To address this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best represent observed diversity by solving a generalized k-medoids problem on a phylogenetic tree. parnas solves this problem efficiently and exactly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user-constrained. Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is more efficient and flexible than current approaches, and applied it to select representative influenza A virus in swine genes derived from over 5 years of genomic surveillance data. Our objective selection of 4 to 6 strains selected every two years from the 16 distinct genetic clades were sufficient to cover 80% of diversity circulating in US swine. We suggest that this method, through the objective selection of representatives in a phylogeny, provides criteria for rational multivalent vaccine design and for quantifying diversity. PARNAS is available at https://github.com/flu-crew/parnas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3