Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas

Author:

Tregidgo Henry F. J.ORCID,Soskic Sonja,Althonayan Juri,Maffei Chiara,Van Leemput Koen,Golland Polina,Yendiki Anastasia,Alexander Daniel C.,Bocchetta MartinaORCID,Rohrer Jonathan D.ORCID,Iglesias Juan Eugenio,

Abstract

ABSTRACTThe human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing label boundaries to be informed by both modalities. We present an improved probabilistic atlas, incorporating 26 thalamic nuclei identified from histology and 45 white matter tracts identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclei versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer’s disease (AUROC 83.36%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3