Bacillus subtilis remains translationally active after CRISPRi-mediated replication initiation arrest

Author:

Muñoz-Gutierrez Vanessa,Cornejo Fabián A.,Schmidt Katja,Frese Christian K.,Halte Manuel,Erhardt Marc,Elsholz Alexander K.W.,Turgay KürşadORCID,Charpentier EmmanuelleORCID

Abstract

AbstractInitiation of bacterial DNA replication takes place at the origin of replication, a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. The absence or failure of DNA replication can result in bacterial cell growth arrest or death. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. For this purpose, DNA replication was blocked using a CRISPRi approach specifically targeting DnaA boxes 6 and 7, which are essential for replication initiation. We characterized the phenotype of these cells and analyzed the overall changes in the proteome using quantitative mass spectrometry. Cells with arrested replication were elongating and not dividing but showed no evidence of DNA damage response. Moreover, these cells did not cease translation over time. This study sets the ground for future research on non-replicating but translationally active B. subtilis, which might be a valuable tool for biotechnological applications.ImportanceEven though bacteria are constantly replicating under laboratory conditions, natural environments expose them to various stresses like lack of nutrients, high salinity, and pH changes, which can keep them in non-replicating states. Non-replicating states can allow bacteria to become less sensitive or tolerant to antibiotics (persisters), remain inactive in specific niches for an extended period (dormancy), and adapt to some hostile ecosystems. Non-replicating states have been studied due to the possibility of repurposing energy to produce additional metabolites or proteins. Using CRISPRi targeting bacterial replication initiation sequences, we successfully arrested the replication of B. subtilis. We observed that non-replicating cells continued growing but not dividing, and the initial arrest did not induce global stress conditions such as SOS or stringent response. Notably, these cells continued their metabolic activity and translation. This study provides comprehensive insights into the physiological response of replication initiation blockage in B. subtilis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3