ARHGEF18 participates in Endothelial Cell Mechano-sensitivity in Response to Flow

Author:

Batta Surya Prakash RaoORCID,Rio MarcORCID,Lebot Corentin,Baron-Menguy Céline,Le Ruz Robin,Loirand GervaiseORCID,Vion Anne-ClémenceORCID

Abstract

AbstractHemodynamic forces play an important role in vascular network development and homeostasis. In physiological condition, shear stress generated by laminar flow promotes endothelial cells (EC) health and induces their alignment in the direction of flow. In contrast, altered hemodynamic forces induce endothelial dysfunction and lead to the development of vascular disorders such as atherosclerosis and aneurysms. Following mechano-sensor activation, Rho protein-mediated cytoskeletal rearrangement is one of the first steps in transforming flow-induced forces into intracellular signals in EC via guanine nucleotide exchange factors (RhoGEFs) that mediate the spatio-temporal activation of these Rho proteins. Here we identified ARHGEF18 as a flow-sensitive RhoGEF specifically activating RhoA. Both ARHGEF18 expression and activity were controlled by shear stress level. ARHGEF18 promotes EC adhesion, focal adhesion formation and migration. ARHGEF18 localized to the tight junction by interacting with ZO-1 and participated to shear stress-induced EC elongation and alignment via its nucleotide exchange activity and the activation of p38 MAPK. Our study therefore characterized ARHGEF18 as the first flow-sensitive RhoA GEF in ECs, whose activity is essential for the maintenance of intercellular junctions and a properly organized endothelial monolayer under physiological flow conditions.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

1. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference

2. An Optimized microRNA Backbone for Effective Single-Copy RNAi

3. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus

4. Cellular mechanotransduction: putting all the pieces together again;FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol,2006

5. Shear stress and the endothelium;Kidney Int. Suppl,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3